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Soliter Pulmoner Nodüllerin Sınıflandırılmasında 18F-FDG PET/BT Radyomik Özelliklerine 
Dayalı Makine Öğrenme Modellerinin Tanısal Performansı

Abstract
Objectives: This study aimed to evaluate the ability of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed 
tomography (PET/CT) radiomic features combined with machine learning methods to distinguish between benign and malignant solitary 
pulmonary nodules (SPN).
Methods: Data of 48 patients with SPN detected on 18F-FDG PET/CT scan were evaluated retrospectively. The texture feature extraction from PET/
CT images was performed using an open-source application (LIFEx). Deep learning and classical machine learning algorithms were used to build 
the models. Final diagnosis was confirmed by pathology and follow-up was accepted as the reference. The performances of the models were 
assessed by the following metrics: Sensitivity, specificity, accuracy, and area under the receiver operator characteristic curve (AUC).
Results: The predictive models provided reasonable performance for the differential diagnosis of SPNs (AUCs ~0.81). The accuracy and AUC of 
the radiomic models were similar to the visual interpretation. However, when compared to the conventional evaluation, the sensitivity of the deep 
learning model (88% vs. 83%) and specificity of the classic learning model were higher (86% vs. 79%).
Conclusion: Machine learning based on 18F-FDG PET/CT texture features can contribute to the conventional evaluation to distinguish between 
benign and malignant lung nodules.
Keywords: Solitary pulmonary nodule, PET/CT, radiomic, machine learning

Öz
Amaç: Bu çalışmada, 18flor-florodeoksiglukoz (18F-FDG) pozitron emisyon tomografisi/bilgisayarlı tomografi (PET/BT) radyomik özelliklerinin makine 
öğrenme yöntemleriyle birleştirilmesinin benign ve malign soliter pulmoner nodülleri (SPN) ayırt etme yeteneğini değerlendirmeyi amaçladık.
Yöntem: 18F-FDG PET/BT taramasında SPN saptanan 48 hastanın verileri geriye dönük olarak değerlendirildi. PET/BT görüntülerinden doku özelliği 
çıkarımı, açık kaynaklı bir uygulama (LIFEx) kullanılarak yapıldı. Modelleri oluşturmak için derin öğrenme ve klasik makine öğrenme algoritmaları 
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Introduction

Lung cancer is an important health problem, representing 
about a quarter of all cancers (1). Early-stage lung cancer 
may manifest as pulmonary nodules with several distinct 
features on medical imaging. A solitary pulmonary nodule 
(SPN) is defined as a well-marginated, rounded parenchymal 
lesion less than 30 mm in diameter, not associated with other 
lung pathologies. Common causes of SPN include benign 
diseases such as infectious granulomas and hamartomas, 
as well as primary or metastatic lung cancers (2). The 
management of patients with SPN includes periodic follow-
up or further imaging and histopathological examination, 
considering the malignancy risk (3,4). Positron emission 
tomography/computed tomography (PET/CT) are widely 
preferred imaging techniques to detect and characterize 
SPN, however their diagnostic efficacy does not fully meet 
clinical needs (5,6).

Radiomics is defined as obtaining high-throughput 
quantitative features and information from medical images 
and is a promising approach that has received widespread 
attention recently (7,8,9,10). Previously, classical machine 
learning methods and more recently, artificial intelligence 
applications have been explored for a wide variety of 
potential uses in lung cancer imaging (11,12,13). Deep 
learning algorithms using large datasets, such as those 
from lung cancer screening trials, detect and classify 
pulmonary nodules with high diagnostic accuracy (13,14).

Several predictive models with generally high diagnostic 
accuracy based on a combination of radiomic features 
from lung CT and PET/CT have been proposed for different 
clinical goals (15,16,17,18,19). Preliminary evidence from 
these studies is promising however more research is 
needed to verify these results before clinical application. 
In this study, we aimed to develop predictive models 
based on 18fluorine-fluorodeoxyglucose (18F-FDG) PET/CT 
texture features for the differential diagnosis of SPN and 
to evaluate the diagnostic performance of these models.

Materials and Methods

Study Populations

The data of patients who underwent 18F-FDG PET/CT 
between January 2014 and December 2018 were analyzed 
retrospectively. The patients included had all the criteria 
following: (i) 18F-FDG avid SPN detected on PET/CT (n=108); 
(ii) availability of pathological evidence or at least one-year 
follow-up (n=80) for the final diagnosis of nodules, as a 
reference standard. The exclusion criteria are as follows: (i) 
Nodules at the base of the lungs likely to cause respiratory 
artifacts (n=15); (ii) nodules with too small metabolic volume 
to allow adequate tissue features to be extracted (n=17). 
Finally, the data of 48 patients were evaluated under the 
above criteria. The Local Ethics Committee of Canakkale 
Onsekiz Mart University Faculty of Medicine approved this 
study under the decision number: 09.12.2020/2020-14 and 
patient informed consent was waived.

PET/CT Acquisition Procedure
18F-FDG PET/CT scans were performed using an integrated 
PET/CT system (Gemini TF16 PET/CT; Philips Medical 
Systems). PET images were acquired 60±5 minutes after 
the intravenous injection of 18F-FDG at a dose of 350-550 
MBq in patients who fasted for at least 6 hours and had 
blood glucose <150 mg/dL. First, a low-dose CT scan (120 
kVp peak voltage, of 60-150 mA automated tube current, 
and 5 mm slice thickness) without contrast enhancement 
was acquired from the skull vertex to the proximal thigh. 
Then, PET images were acquired for 2-3 minutes per bed 
position in 3D mode. PET images were reconstructed 
using the line-of-response row-action maximum likelihood 
algorithm (LOR-RAMLA; Philips Astonish TF).

PET/CT Image Interpretation

The PET images were reviewed by two experienced nuclear 
medicine specialists blinded by the final diagnosis, and 
the final decision was reached by consensus. The decision 
for benign and malignant nodules was based on 18F-FDG 
avidity on PET, along with CT features such as size, margin, 
density, and calcification (20).
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kullanıldı. Patoloji ve izlem ile kesinleşen tanı referans olarak kabul edildi. Modellerin performansları şu metriklerle değerlendirildi: Duyarlılık, 
özgüllük, doğruluk ve alıcı operatör özellikleri eğrisi altındaki alan (EAA).
Bulgular: Tahmine dayalı modeller, SPN’lerin ayırıcı tanısı için makul performans sağlandı (EAA’ler ~0,81). Radyomik modellerin doğruluğu ve 
EAA’sı görsel yorumlamaya benzerdi. Ancak geleneksel değerlendirme ile karşılaştırıldığında, derin öğrenme modelinin duyarlılığı (%88’e karşı 
%83) ve klasik öğrenme modelinin özgüllüğü (%86’ya karşı %79) daha yüksekti.
Sonuç: 18F-FDG PET/BT doku özelliklerine dayalı makine öğrenimi, iyi huylu ve kötü huylu akciğer nodüllerini ayırt etmek için geleneksel 
değerlendirmeye katkıda bulunabilir.
Anahtar kelimeler: Soliter pulmoner nodül, PET/BT, radyomik, makine öğrenmesi
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Feature Extraction

An open-source application (LIFEx version 6.30) was 
used for texture analysis from PET/CT images (21). This 
application declares Image Biomarker Standardization 
Initiative compliance. A fixed relative thresholding technique 
was applied for the tumor delineation on images. A 3-D 
spherical volume of interest (VOI) was initially placed on 
the entire lesion. A 40% maximum standardized uptake 
value (SUV

max
) threshold was applied to (semi)automatically 

delineation the VOI of the target lesion on the PET images. 
All volumes were spatially resampled of 4×4×4 mm in size; 
absolute resampling was used for intensity rescaling with 
bounds from 0 to 20 SUV (64 bins, 0.32 fixed bin width); 
and 64 gray levels were applied for intensity discretization. 
Radiomic features derived from PET images included 
conventional indices; first-order features-histogram; shape 
features; second-order texture features [gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix 
(GLRLM), gray-level zone length matrix (GLZLM) and 
neighborhood gray-tone different matrix (NGLDM)]. A 
detailed description of the texture parameters can be 
found at http://www.lifexsoft.org.

Model Establishment

First, feature selection and dimensionality reduction were 
applied to the feature dataset using the recursive feature 
elimination (RFE) method. The RFE is a feature selection 
method that fits a model and removes the weakest features 
until the specified number of features is reached (22). We 
build two prediction models based on supervised machine 
learning classification algorithms selected feature sets: 
Extreme gradient boosting (XGB) and deep neural network 
(DNN) to distinguish between benign and malignant 
nodules. XGB is a tree-based algorithm under the supervised 
branch of machine learning. XGB, which ensembles the 
decision tree methods, uses a computationally efficient 
descent algorithm to minimize errors while adding new 
trees (19). Deep learning is multi-layer feed-forward neural 
network that accepts images as input and can be trained 
end-to-end in a supervised method while learning highly 
discriminative image features. The opportunity to use large 
databases has paved the way for the wider adoption of 
machine/deep learning techniques, particularly in lung 
cancer assessment (14).

For all models, the dataset was randomly split into two 
sets using 70% of the samples for training/validating the 
models and the remaining 30% for testing the results. 
The models were evaluated using k-fold cross-validation, 
with three repeats and 10 folds. Figure 1 illustrates the 
workflow of the radiomic analysis. 

Statistical Analysis

We used IBM SPSS statistics software (version 23.0; SPSS 
Inc.) and Python software to perform statistical analyses. 
We investigated the performance of predictive models and 
compared them with the visual evaluation. The following 
metrics obtained through the confusion matrix were used 
to compare the performance of the models: Sensitivity, 
specificity, accuracy, and area under the receiver operator 
characteristic curve.

Results

In total, the records of 80 patients with SPN were 
reviewed. Thirty-two patients were excluded under the 
exclusion criteria. As a result, the study group consisted 
of 48 patients (31 males, 17 females) with a mean age of 
62.38±11.27 years. All of the malignant nodules and 12 of 
the benign lesions were pathologically proven; the diagnosis 
of benign lesions was confirmed by follow-up in 5 patients. 
Thirty-one lesions were malignant nodules, and 17 lesions 
were benign. The most common malignant diagnosis 
was adenocarcinoma (58%), while the benign disease 
was a granulomatous change (53%). The diagnosis and 
subtypes of SPNs are summarized in Table 1. The majority 
of malignant nodules (71%) occurred in the upper lobes, 
whereas about half of the benign nodules (48%) occurred 
in the lower lobes. Central calcification was observed in 
four of the benign nodules and punctual calcification was 
observed in one of the malignant nodules. While most 
benign nodules tend to have well-defined edges, about half 
of the malignant nodules have irregular and poorly defined 
margins. The average diameter of malignant nodules was 
20.32 mm (range 16.1-30) and that of benign nodules was 
16.9 mm (range 14.2-30). The average SUV

max
 of malignant 

nodules was 5.46 (range 1.88-10.33) and that of benign 
nodules was 2.06 (range 1.12-6.77). While SUV

max 
was 

<2.5 in 24% (4/17) of malignant nodules, SUV
max

 was >2.5 
in 23% (7/31) of benign nodules. 

The ten most relevant PET features obtained after 
feature selection and used to develop predictive models 
are represented in Table 2. The three features with the 
highest score by the assessment of feature importance 
were GLZLM_SZLGE (n=30), HISTO_Energy (n=21), and 
SUV

bwmean
 (n=21). A few of the second-order features (D_

HISTO_Energy, GLCM_Homogeneity, NGLDM_Busyness) 
were higher in benign nodules, while conventional SUV-
related features and other second-order features were 
higher in the malignant group. Texture features that differ 
significantly between malignant and benign nodules are 
shown in Table 3. 

Table 4 shows the performance of radiomic models and 
visual interpretation in the differential diagnosis of SPN. 

Salihoğlu et al. Machine Learning Models in 18F-FDG PET/CT
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The overall diagnostic performances of both models were 
close to each other. The DNN model improved sensitivity, 
while the XGB model increased specificity compared to 
visual assessment.

Discussion

In this study, we evaluated the performance of machine 
learning models based on 18F-FDG PET/CT radiomic 

features for SPN classification. We have shown that the 
diagnostic accuracy of predictive models is higher than that 
of commonly used clinical metrics and visual interpretation. 
The improved diagnostic performance could benefit by 

Salihoğlu et al. Machine Learning Models in 18F-FDG PET/CT

Table 1. The diagnosis and subtypes of the SPNs

Type Diagnosis Number

Benign (n=17)

Infectious granuloma 9

Hamartoma 3

Not specified* 5

Malignant (n=31)

Adenocarcinoma 18

Squamous cell carcinoma 7

Metastasis 2

Small cell carcinoma 2

Carcinoid tumor 2

*Diagnosed by follow-up, SPNs: Solitary pulmonary nodules

Table 2. The most relevant PET features obtained after 
feature selection

f score Texture features

f0 C_SUV
bwmean

f1 D_HISTO_Energy

f2 GLCM_Energy

f3 GLCM_Dissimilarity

f4 GLRLM_HGRE

f5 GLRLM_SRHGE

f6 GLRLM_LRHGE

f7 NGLDM_Busyness

f8 GLZLM_SZLGE

f9 GLZLM_SZHGE

SUV: Standardized uptake value, GLCM: Gray-level co-occurrence matrix, GLRLM: 
Gray-level run-length matrix, NGLDM: Neighborhood gray-tone different matrix, 
GLZLM: Gray-level zone length matrix

1. Image Segmentation 4. Data Analysis

Radiomic features
+

Clinical data

3. Machine Learning

✓Redundancy reduction / robustness assessment

✓Model building / validation

✓XGB

✓DNN

2. Feature Extraction

Figure 1. The flowchart of radiomics. 1) The VOI was (semi)automatically defined on PET/CT images with a threshold of 40% of the SUV
max

. 2) 
Radiomic features from the VOI were extracted, including first-order and second-order features. 3) Predictive models were established by feature 
selection methods and classification methods. 4) The model’s performance was evaluated by appropriate statistical methods
VOI: Volume of interest, PET/CT: Positron emission tomography/computed tomography, SUV

max
: Maximum standardized uptake value
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preventing unnecessary invasive tests following false-
positive findings or providing an earlier diagnosis of 
malignant disease.
18F-FDG PET/CT has reasonable sensitivity to differentiate 
benign from malignant pulmonary nodules but has lower 
specificity due to granulomatous diseases (5,6,23,24). Many 
recent studies have concluded that medical image radiomic 
features improve clinical or imaging outcomes in many 
cancers. Although the results available in the literature are 
promising, they have not yet been sufficiently introduced 
into clinical practice due to well-known limitations such as 
the lack of use of standardized methods in the workflow 
and the lack of external validation (9,10,13).

PET/CT radiomics in lung cancer have been investigated 
for clinical goals such as characterization of nodules, 
histological subtyping, prediction of survival, and response 
to therapy (11,12). Few studies that focused on the 
characterization of pulmonary nodules demonstrated 
the ability of PET/CT radiography to distinguish between 

malign and benign lesions (15,16,17,18,19,25,26,27). 
In the studies, the results of machine learning models 
trained with texture features derived from 18F-FDG PET/
CT were compared with standard metrics [SUV, metabolic 
tumor volume (MTV), and total lesion glycolysis] and/or 
visual interpretation evaluation. Studies with dual time 
point 18F-FDG PET/CT, particularly the results obtained with 
tissue properties in delayed images, provided important 
improvements for classifying SPNs (14,15,27,28). Texture 
features that reflect intra-lesional heterogeneity, termed 
second-order texture features in this study, showed 
significant differences between the malignant and benign 
groups, as reported in studies.

Our predictive models showed reasonable diagnostic 
performance with balanced sensitivity and specificity for 
the differential diagnosis of SPNs. Compared with the 
conventional evaluation results, the deep learning model 
increased sensitivity, while the classic machine learning 
model increased specificity. The overall performance of our 
models was consistent with the results of the cited studies; 
however, the improvement in diagnostic accuracy was less 
than the reported results (15,16,17,18,19). This difference 
may be due to the small size of our cohort and the fact 
that the diagnosis of all nodules was not confirmed by 
pathology. Additionally, most investigators created models 
with tissue features from dual time-point PET/CT, and 
higher diagnostic accuracy was reported, particularly from 
delayed images.

In standard PET/CT scans, respiratory motion adversely 
affects both alignment and image sharpness, resulting 
in reduced tracer uptake and an overestimation of MTV 
(29). Several PET/CT radiomics articles have reported 
that respiratory motion significantly affects the values 
of texture features of lung lesions (30,31). These effects 
differ according to the location of the lesion in the lung; 
for example, it is more prominent in the lower lobes. 
Therefore, nodules located in the lower lobes of the lungs 
were excluded from the radiomic analysis in our study.

It is difficult to compare the results of machine learning 
studies reported on PET/CT imaging of lung cancer, as 
researchers have chosen different materials and methods 
to construct their models. We performed PET/CT radiomic 
analysis with two models based on classifiers and feature 
selection methods to improve the quality score of our 
study, as suggested by Lambin et al. (32). Zhou et al. (19) 
compared the performance of machine learning models 
based on PET/CT radiomics for the classification of lung 
lesions (16). They reported that most classifiers combined 
with appropriate feature selection methods showed 
excellent discrimination. They suggested that gradient 

Table 4. The estimated performances of radiomic models 
and visual interpretation

Model SN SP ACC AUC

DNN 88% 82% 0.80 0.81

XGB 81% 86% 0.79 0.80

VI 83% 79% 0.80 0.80

SN: Sensitivity, SP: Specificity, ACC: Accuracy, AUC: Area under the curve, DNN: 
Deep neural network, XGB: Extreme gradient boosting, VI: Visual interpretation

Table 3. Texture features with significant differences 
between malignant benign nodules

Features Benign SPN Malign SPN p

C_SUV
bwmin

1.19±0.75 2.61±1.27 0.0003

C_SUV
bwmean

2.52±1.63 6.53±2.62 <0.0001

C_SUV
bwmax

4.11±2.56 10.85±4.52 <0.0001

D_HISTO_Energy 0.22±0.14 0.08±0.03 <0.0001

GLCM_Homogeneity 0.54±0.17 0.33±0.11 <0.0001

GLCM_Energy 0.081±0.19 0.014±0.011 <0.0001

GLCM_Dissimilarity 1.27±1.21 4.72±2.13 <0.0001

GLRLM_HGRE 124±104 567±232 <0.0001

GLRLM_SRHGE 95±121 543±423 <0.0001

GLRLM_LRHGE 148.95±137.49 672.55±470.7 <0.0001

NGLDM_Busyness 0.87±0.52 0.24±0.23 <0.0001

GLZLM_SZLGE 0.013±0.013 0.004±0.008 <0.0001

GLZLM_SZHGE 48.75±45.77 342.91±306.06 <0.0001

SPN: Solitary pulmonary nodule, SUV: Standardized uptake value, GLCM: Gray-level 
co-occurrence matrix, GLRLM: Gray-level run-length matrix, NGLDM: Neighborhood 
gray-tone different matrix, GLZLM: Gray-level zone length matrix

Salihoğlu et al. Machine Learning Models in 18F-FDG PET/CT
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boosting decision tree and random forest are the best 
classification methods. In another study, the deep learning 
method was compared with classical machine learning 
methods to classify mediastinal lymph node metastasis 
in PET/CT images (33). The authors reported that there 
was no significant difference between the results of deep 
learning and classical methods, however, machine learning 
methods have higher sensitivity but lower specificity than 
doctors.

Study Limitations

Several limitations should be considered in our study. 
First, this study was a retrospective analysis and inherent 
selection bias existed. Secondly, the small size of our study 
population may have adversely affected the performance 
of machine learning algorithms. Thirdly, the study’s lack of 
external validation limits the generalizability of our results.

Conclusion

In this study, we performed a machine learning-based 
analysis of pulmonary nodules using PET/CT images. We 
found that 18F-PET/CT-based radiomic features can provide 
added value in differentiating SPNs. The method should 
be further confirmed in large-scale multicenter, ideally 
prospective studies so that it can be applied in routine 
clinical practice.
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